Verifying Genuine High-Order Entanglement

Date: 2010-11-19
Authors Che-Ming Li, Kai Chen, Andreas Reingruber, Yueh-Nan Chen and Jian-Wei Pan
Journal No. Phys. Rev. Lett. 105, 210504 (2010)
Abstract High-order entanglement embedded in multipartite multilevel quantum systems (qudits) with many degrees of freedom (DOFs) plays an important role in quantum foundation and quantum engineering. Verifying high-order entanglement without the restriction of system complexity is a critical need in any experiments on general entanglement. Here, we introduce a scheme to efficiently detect genuine high-order entanglement, such as states close to genuine qudit Bell, Greenberger-Horne-Zeilinger, and cluster states as well as multilevel multi-DOF hyperentanglement. All of them can be identified with two local measurement settings per DOF regardless of the qudit or DOF number. The proposed verifications together with further utilities such as fidelity estimation could pave the way for experiments by reducing dramatically the measurement overhead.